PII: S0957-4166(96)00508-3

Asymmetric synthesis of the δ -lactone moiety in mevinic acid derivatives using an enzymatic procedure

Hidetaka Kaku, a Masakazu Tanaka, a Yoshihiko Norimine, a Yuko Miyashita, a Hiroshi Suemune a, a and Kiyoshi Sakai b

^a Faculty of Pharmaceutical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-82, Japan ^b Kyushu Women's University, Kitakyushu 807, Japan

Abstract: Asymmetric induction into *meso*-1,3-diacetoxy-5-cycloheptene **4** by PFL-catalyzed hydrolysis afforded monoacetate (1S,3R)-**5** of 96% enantiomeric excess (e.e.), which was converted into a synthetic equivalent **14** of the δ -lactone moiety in mevinic acid derivatives. © 1997 Published by Elsevier Science Ltd. All rights reserved.

Mevinic acid derivatives¹ such as compactin, mevinolin, synvastatin and pravastatin have attracted much synthetic attention because of their biological activities as inhibitors of HMG CoA reductase. We report here an asymmetric synthesis of a versatile unit for the lactone moiety² of the above compounds by using an enzymatic procedure. The target lactol derivative 14 with a 2-iodoethyl substituent at the C6-position would be applicable as a useful electrophile to construct the mevinic acid derivatives.

Diastereoselective preparation of substrate for enzymatic chiral induction

As a substrate for enzymatic chiral induction, we designed seven-membered 1,3-diacetate 4, which was synthesized from 3,5-cycloheptadienol³ 1 in a diastereoselective manner. That is to say, monoepoxidation of 1 with *m*-chloroperbenzoic acid (1.1 equiv.) in CH₂Cl₂ at room temperature predominantly gave *cis*-epoxyalcohol 2a (95% yield) accompanied with *trans*-epoxyalcohol 2b (4% yield), which were easily separated by silica-gel column chromatography. Stereochemistry of 2a was deduced based on NOESY spectrum, in which NOEs were observed between C1–H α and C3–H α , and between C3–H α and C4–H α . Reduction of 2a with LiAlH₄ afforded the desired *cis*-5-cyclohepten-1,3-diol 3a (45%). In the 270 MHz ¹H NMR spectrum of 3a, C2-protons were differently observed at δ 1.67 (1H, C2 β -H, dt, J=12.3, 10.9 Hz) and δ 2.30 (m, C2 α -H). On the other hand, those of 3b derived from 2b by a similar LiAlH₄ reduction were equivalently observed at δ 2.02 (2H, t, J=5.9 Hz) based on its C_2 -symmetric structure. Thus, the stereochemistry of 3a,b was unambiguously determined. Acetylation of 3a in the usual manner gave the corresponding diacetate 4 (99%) (Scheme 1).

PFL-Catalyzed asymmetric hydrolysis

Lipase-catalyzed asymmetric hydrolysis of **4** was studied using three kinds of lipases such as *Pseudomonas fluorescence* lipase (PFL), ^{4,5} Lipase A, and Lipase A-6. Among them, PFL-catalyzed hydrolysis gave the best result in both chemical yield and enantiomeric excess (e.e.) of the monoacetate (-)-**5** (72% yield, 96% e.e.) (Scheme 2). The enantiomeric excess of the hydrolyzed products was determined by ¹H NMR spectra after conversion into the corresponding Mosher's esters [(+)-MTPA esters]. The ¹H NMR spectra of (+)-MTPA ester derived from (±)-**5** showed the methyl proton signals at δ 2.03 (s, 1.5H) and 2.01 (s, 1.5H), while the corresponding signal from (-)-**5** was observed at δ 2.03 (s) and 2.01 (s) in the ratio of 98 to 2. The absolute configuration of (-)-**5** was determined as follows. The obtained (-)-**5** (96% e.e.) was converted into *trans*-1,3-bis(benzoyloxy)cycloheptane (+)-**8** *via* a four-step sequence: i. hydrogenation of the double bond of (-)-**5**; ii. inversion of the hydroxy

^{*} Corresponding author. Email: suemune@lyra.phar.kyushu-u.ac.jp

196 H. KAKU et al.

OH OH OH OH
$$\frac{m\text{-CPBA}}{\text{CH}_2\text{Cl}_2}$$
 $\frac{1}{2}$ $\frac{3}{3}$ + $\frac{1}{2}$ $\frac{3}{3}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{2a}{3}$ $\frac{1}{3}$ $\frac{1}{3}$

Scheme 1. Diastereoselective preparation of substrate 4 for enzymatic hydrolysis.

Scheme 2.

Scheme 3.

group by Mitsunobu reaction into (-)-6; iii. solvolysis of the acetate into (+)-7; iv. benzoylation of the hydroxy group. The CD spectrum of (+)-8 showed the positive first Cotton effect $(\Delta \epsilon = +13.6, 232.4 \text{ nm}, \text{MeOH})$, from which the absolute stereochemistry of (+)-8 was determined to be S,S and that of monoacetate (-)-5 was 1S, 3R (Scheme 3). (25.9)

Preparation of a synthetic equivalent for the δ -lactone moiety in mevinic acids

For the synthesis of the target 14, the conversion of the acetate function in (-)-5 into the tert-butyldiphenylsilyl (TBDPS) ether in 10 is necessary. This conversion was achieved by a four-step sequence in good yields: i. protection of the hydroxy group in (-)-5 as 1-ethoxyethyl ether 9; ii. solvolysis of the acetate function; iii. protection of the S-hydroxy group as a TBDPS ether; iv. chemoselective deprotection of the ethoxyethyl ether. Ozonolysis of 10 and subsequent treatment with Zn/AcOH gave the hemiacetal 11 in 60% yield as a 1:1 diastereomeric mixture at the C2-position. Protection of the hemiacetal function in 11 as a TBDMS ether gave the sole product 12 in 70% yield. This result suggests that O-silylation proceeded from only (2S)-11 to afford the sterically stable 12 accompanied with a shift of equilibrium between diastereomeric hemiacetals 11.

The compound 12 was converted into the corresponding alcohol 13 by NaBH₄ reduction. Compound 13 resisted usual sulfonylation by p-TsCl and/or MsCl in the presence of 4-dimethylaminopyridine, which allows us to consider the hydrogen-bonded structure of 13A. Direct iodination of 13 was achieved by using $I_2/PPh_3/pyridine$ to give the target molecule 14 in 95% yield (Scheme 4). In the 1H NMR spectrum of 14, C2-H was observed at δ 5.30 (dd, J=9.4, 2.1 Hz), C4-H at δ 4.22 (tt,

Scheme 4. Preparation of a synthetic equivalent for the δ -lactone in mevinic acids.

J=9.0, 2.8 Hz) and C6–H at δ 4.26 (m, W_H=7.5 Hz), which suggests the C2- and C4-substituents are in equatorial orientation and the C6-substituent in axial orientation. Synthetic application of **14** for mevinic acid derivatives is currently under investigation.

Experimental

IR spectra were measured with a JASCO A-202 spectrometer. ¹H NMR and ¹³C NMR spectra were recorded on a JEOL JNM-GX-270 or JEOL JNM-FX-100 spectrometer. EIMS spectra were taken on a JEOL JMS-D 300 spectrometer and FDMS spectra were taken on a JEOL JMS-DX 300 spectrometer. Specific rotation was measured on a JASCO DIP-360 polarimeter. Melting points were uncorrected. For O₃ oxidation, Ishii ozone generator (7,800 V, O₂ flow rate; 0.5 mL/min) was used. THF was distilled from Na/benzophenone before use. Benzene and CH₂Cl₂ were distilled from P₂O₅. PFL (Amano PS), Lipase A and Lipase A-6 were gifted by courtesy of Amano Pharmaceutical Corp. (Japan), and were used as received.

(IRS,3RS,4SR)-3,4-Epoxy-5-cyclohepten-1-ol (2a) and (IRS,3SR,4RS)-3,4-epoxy-5-cyclohepten-1-ol (2b)

A solution of *m*-CPBA (80%) (22.3 g, 104 mmol) in CH₂Cl₂ (200 mL) was added to the stirred solution of 3,5-cycloheptadien-1-ol 1 (13.4 g, 122 mmol) in CH₂Cl₂ (300 mL) at 0°C. After being stirred at 0°C for 5 h, the reaction mixture was filtered. The filtrate was washed with aqueous 5% NaHCO₃ and brine, and then dried over MgSO₄. Removal of the solvent *in vacuo* gave an oily residue, which was purified by column chromatography on silica gel. The fraction eluted with AcOEt afforded 2a (14.6 g, 95%) and 2b (0.7 g, 4%).

2a: A colorless oil. IR (neat) 3400, 2900, 1651, 1420, 1260, 1120, 1040 cm⁻¹. ¹H NMR (CDCl₃) δ 5.75 (m, 2H), 4.36 (m, 1H), 3.20 (m, 2H), 2.90 (dd, J=4.3, 14.5 Hz, 1H), 2.77 (dd, J=7.9, 14.5 Hz, 1H), 2.40–2.70 (m, 2H), 1.80 (m, 1H). EIMS m/z 126 (M⁺), 108 (M⁺-H₂O).

2b: A colorless oil. IR (neat) 3400, 2900, 1650, 1420, 1060, 1040 cm $^{-1}$. ¹H NMR (CDCl₃) δ 5.84 (m, 1H), 5.61 (m, 1H), 4.65 (m, 1H), 4.38 (dd, J=6.3, 8.6 Hz, 1H), 4.23 (d, J=4.6 Hz, 1H), 2.66 (m,

198 H. KAKU et al.

1H), 2.17 (ddd, J=2.0, 6.3, 13.8 Hz, 1H), 1.96–2.15 (m, 2H), 1.65 (m, 1H). ¹³C NMR (CDCl₃) δ 128.0 (d), 124.4 (d), 79.8 (d), 77.9 (d), 73.4 (d), 41.5 (t), 33.5 (t). EIMS m/z 126 (M⁺), 108 (M⁺-H₂O).

(IRS,3SR)-5-Cycloheptene-1,3-diol (3a)

A solution of **2a** (14.6 g, 116 mmol) in THF (20 mL) was added to the stirred suspension of LiAlH₄ (3.46 g, 96.3 mmol) in THF (220 mL) at 0°C. After being stirred at room temperature for 20 h, the reaction was quenched with 15% aqueous NaOH. Resulting precipitate was filtered off through Celite. The filtrate was dried over MgSO₄. Removal of the solvent *in vacuo* gave an oily residue, which was purified by column chromatography on silica gel. The fraction eluted with 50% AcOEt in hexane afforded **3a** (6.7 g, 45%) as colorless crystals. mp 129–130°C (Et₂O-hexane). IR (nujol) 3200, 1630, 1030, 1000 cm⁻¹; ¹H NMR (CD₃OD) δ 5.78 (m, 2H), 3.50 (tt, J=3.3, 9.9 Hz, 2H), 2.15–2.45 (m, 5H), 1.67 (dt, J=12.3, 10.9 Hz, 1H). EIMS m/z 110 (M⁺-H₂O).

(1RS,3SR)-1,3-Diacetoxy-5-cycloheptene (4)

Ac₂O (15 mL) was added to the stirred solution of *cis*-diol **3a** (3.0 g, 23.4 mmol) in pyridine (24 mL) at 0°C. After being stirred at room temperature for 20 min, the reaction mixture was poured into ice water and extracted with AcOEt. The extracts were successively washed with 5% aqueous NaHCO₃, brine, and then dried over MgSO₄. Removal of the solvent *in vacuo* gave an oily residue, which was purified by column chromatography on silica gel. The fraction eluted with 20% AcOEt in hexane afforded **4** (4.7 g, 99%) as a colorless oil. IR (neat) 1730, 1630, 1220, 1000 cm⁻¹. ¹H NMR (CDCl₃) δ 5.77 (m, 2H), 4.72 (m, 2H), 2.28–2.45 (m, 5H), 2.03 (s, 6H), 1.90 (dt, J=10.9, 11.2 Hz, 1H). EIMS m/z 212 (M⁺).

(1S,3R)-1-Acetoxy-5-cyclohepten-3-ol (-)-(5)

PFL (500 mg) was added to a suspension of 4 (500 mg) in acetone (10 mL) and 0.1 M phosphate buffer (100 mL, pH 7.0). The whole was stirred at 30°C for 44 h and then extracted with CH₂Cl₂. (When a spot of the corresponding diol 3a appeared on TLC, reaction was quenched by extraction.) The CH₂Cl₂ extract was dried over MgSO₄, and then concentrated *in vacuo* to leave an oily residue, which was purified by column chromatography on silica gel. The fraction eluted with 30% AcOEt in hexane afforded (-)-5 (289 mg, 72%) as a colorless oil. [α]_D²⁶ -49.0 (c 1.45, CHCl₃). IR (neat) 3400, 2950, 1730, 1250, 1025 cm⁻¹. ¹H NMR (CDCl₃) δ 5.77 (m, 2H), 4.75 (m, 1H), 3.73 (m, 1H), 2.28-2.45 (m, 5H), 2.04 (s, 3H), 1.88 (dt, J=10.2, 12.9 Hz, 1H), 1.72 (br s, 1H). EIMS m/z 170 (M⁺), 152 (M⁺-H₂O). HRMS for C₉H₁₄O₃ M⁺ 170.0943, found 170.0937.

Determination of absolute configuration of (-)-5

Hydrogenation of (-)-5 (203 mg) in MeOH catalyzed by 5% Pd-C (150 mg) was performed in a usual manner (room temperature, 3 h) and subsequent purification by silica-gel column chromatography (20% AcOEt in hexane) gave (-)-3-acetoxycycloheptanol (171 mg, 83%) as a colorless oil. $[\alpha]_D^{21}$ -9.26 (c 1.30, CHCl₃). Diethyl azodicarboxylate (1.65 g) was added to a mixture of (-)-3-acetoxycycloheptanol (163 mg), triphenylphosphine (1.24 g), and acetic acid (0.38 mL) in THF (5 mL) at 0°C. The whole was stirred for 3 h at room temperature. The reaction mixture was diluted with Et₂O and washed with brine, and then dried over MgSO₄. Purification by silica-gel column chromatography gave (-)-6 (149 mg, 74%) as a colorless oil. $[\alpha]_D^{20}$ -9.21 (c 1.16, CHCl₃). IR (neat) 2940, 1730, 1440, 1370, 1235, 1025 cm⁻¹. ¹H NMR (CDCl₃) δ 5.08 (m, 2H), 2.04 (s, 6H), 2.00-1.30 (m, 10H). FDMS m/z 215 (M⁺+1).

Solvolysis of (-)-6 (73 mg) in MeOH (1 mL) using K_2CO_3 (10 mg) (room temperature, 15 h) and subsequent purification by silica-gel column chromatography (10% hexane in AcOEt) gave (+)-7 (43.6 mg, 98%) as a colorless oil. $[\alpha]_D^{23}$ +16.0 (c 1.64, CHCl₃). IR (neat) 3375, 2925, 1450, 1215, 1020 cm⁻¹. ¹H NMR (CDCl₃) δ 4.08 (m, 2H), 3.48 (brs, 2H), 2.00 (t, J=5.3 Hz, 2H), 1.94–1.50 (m, 8H). EIMS m/z 112 (M⁺-H₂O). Usual benzoylation of (+)-7 (33 mg) using benzoyl chloride in pyridine gave corresponding dibenzoate (+)-8 (69 mg, 80%) as a colorless oil. $[\alpha]_D^{24}$ +93.1 (c 0.59, CHCl₃).

IR (neat) 2925, 1710, 1450, 1270, 1110 cm⁻¹. ¹H NMR (CDCl₃) δ 8.05 (m, 4H), 7.40–7.60 (m, 6H), 5.48 (m, 2H), 2.34 (t, J=5.6 Hz, 2H), 2.13 (m, 2H), 1.55–2.00 (m, 6H). CD $\Delta \epsilon$ =+13.6 (232.4 nm, MeOH). EIMS m/z 339 (M⁺+1), 338 (M⁺), 216. HRMS for C₂₁H₂₂O₄ M⁺ 338.1502, found 338.1518.

(1S,3R)-(-)-1-Acetoxy-3-(1-ethoxyethyl)oxy-5-cycloheptene (9)

Pyridinium *p*-toluenesulfonate (100 mg) was added to a stirred solution of ethyl vinyl ether (558 mg, 7.76 mmol) and (–)-5 (1.10 g, 6.47 mmol) in CH_2Cl_2 (30 mL) at 0°C. After being stirred at room temperature for 2 h, the reaction mixture was diluted with CH_2Cl_2 , and washed with brine then dried over MgSO₄. Removal of the solvent *in vacuo* gave an oily residue, which was purified by column chromatography on silica gel. The fraction eluted with 10% AcOEt in hexane afforded **9** (1.24 g, 79%) as a colorless oil. IR (neat) 2975, 2925, 1720, 1430, 1360, 1230, 1120, 1080, 1010, 940, 840, 700 cm⁻¹. ¹H NMR (CDCl₃) δ 5.77 (m, 2H), 4.73 (ddd, J=10.9, 5.8, 5.3 Hz, 1H), 4.64 (m, 1H), 3.63 (m, 1H), 3.48 (m, 2H), 2.33 (m, 5H), 2.03 (s, 3H), 1.82 (m, 1H), 1.29 (d, J=5.7 Hz, 1.5H), 1.30 (d, J=5.1 Hz, 1.5H), 1.20 (t, J=7.1 Hz, 1.5H), 1.19 (t, J=7.1 Hz, 1.5H). FABMS m/z 243 (M⁺+1).

(IR,3S)-3-tert-Butyldiphenylsiloxy-5-cyclohepten-I-ol (10)

A solution of 9 (1.20 g, 4.96 mmol) and K₂CO₃ (208 mg, 1.49 mmol) in MeOH (20 mL) was stirred at room temperature for 3 h. After removal of the solvent, the residue was diluted with brine and extracted with AcOEt. The combined extracts were washed with 2% aqueous HCl, 5% aqueous NaHCO₃ and brine, and then dried over MgSO₄. Removal of the solvent in vacuo gave an oily residue, which was dissolved in DMF (2 mL). This solution was added to a stirred solution of imidazole (328 mg, 4.87 mmol) and TBDPSCl (1.39 g, 4.87 mmol) in DMF (20 mL) at 0°C. After being stirred at room temperature for 2 h, the reaction mixture was diluted with benzene and washed with brine, and then dried over MgSO₄. Removal of the solvent in vacuo gave an oily residue, which was dissolved in a mixure of acetone (22 mL) and 5% aqueous AcOH (22 mL). After being stirred at room temperature for 2 h, the reaction mixture was diluted with AcOEt, washed with 5% aqueous NaHCO3 and brine, and then dried over MgSO₄. Removal of the solvent in vacuo gave an oily residue, which was purified by column chromatography on silica gel. The fraction eluted with 5% AcOEt in hexane afforded 10 (1.2 g, 66%) as a colorless oil. $[\alpha]_D^{23}$ -24.9 (c 1.37, CHCl₃). IR (neat) 3350, 2940, 1420, 1370, 1240, 1110 cm⁻¹. ¹H NMR (CDCl₃) δ 7.67 (m, 4H), 7.40 (m, 6H), 5.72 (dt, J=10.5, 5.8 Hz, 1H), 5.60 (dt, J=10.5, 5.8 Hz, 1H), 3.83 (m, 1H), 3.68 (brs, 1H), 2.56 (brs, 1H), 2.41 (ddd, J=14.7, 8.5, 6.1 Hz, 1H), 2.29–2.01 (m, 5H), 1.06 (s, 9H). FABMS m/z 367 (M⁺+1).

(2RS,4R,6S)-4-tert-Butyldiphenylsiloxy-2-hydroxy-6-(2-oxoethyl)-1-oxacyclohexane (11)

Ozone gas was bubbled into a solution of 10 (300 mg, 1.24 mmol) in CH₂Cl₂ (5 mL) at -78° C until reaction mixture showed blue color continuously. Zn (1 g, 15.30 mmol) and AcOH (5 mL) was added to the reaction mixture at -78° C. The reaction mixture was gradually warmed to room temperature while being stirred. After 3 h, the reaction mixture was diluted with CH₂Cl₂ and filtered. The filtrate was washed with brine, and then dried over MgSO₄. Removal of the solvent *in vacuo* gave an oily residue, which was purified by column chromatography on silica gel. The fraction eluted with 20% AcOEt in hexane afforded 11 (190 mg, 60%) as a colorless oil. [α]D²⁷ -13.9 (c 0.93, CHCl₃). IR (neat) 3425, 3075, 2925, 2950, 1720, 1420, 1360, 1100, 1040 cm⁻¹. ¹H NMR (CDCl₃) δ 9.79 (m, 1H), 7.65 (m, 4H), 7.40 (m, 6H), 5.62 (d, J=10.5 Hz, 0.5H), 5.27 (m, 1H), 4.89 (m, 0.5H), 4.59 (m, 0.5H), 4.25 (m, 1.5H), 2.61 (m, 1H), 2.46 (m, 1H), 2.18–1.18 (m, 4H), 1.12 (m, 9H). FABMS m/z 381 (M⁺+1-H₂O).

(2R,4R,6S)-2-tert-Butyldimethylsiloxy-4-tert-butyldiphenylsiloxy-6-(2-oxoethyl)-1-oxa-cyclohexane (12)

A solution of imidazole (67 mg, 0.99 mmol) and TBDMSCl (198 mg, 1.34 mmol) in CH₂Cl₂ (1 mL) was added to the stirred solution of 11 (180 mg, 0.66 mmol) in CH₂Cl₂ (1 mL) at 0°C. After being stirred at room temperature for 15 h, the reaction mixture was diluted with CH₂Cl₂, washed

200 H. KAKU et al.

with brine, and then dried over MgSO₄. Removal of the solvent *in vacuo* gave an oily residue, which was purified by column chromatography on silica gel. The fraction eluted with 4% AcOEt in hexane afforded 12 (162 mg, 70%) as a colorless oil. $[\alpha]_D^{27}$ -8.62 (c 0.24, CHCl₃). IR (neat) 2950, 1730, 1460, 1430, 1380, 1250, 1160, 1110, 1040 cm⁻¹. ¹H NMR (CDCl₃) δ 9.82 (m, 1H), δ 7.65 (m, 4H), 7.38 (m, 6H), 5.31 (m, 1H), 4.54 (m, 1H), 4.24 (m, 1H), 3.52 (m, 1H), 2.58 (m, 1H), 1.73-1.10 (m, 4H), 1.09 (s, 9H), 0.89 (s, 9H), 0.12 (s, 3H), 0.09 (s, 3H). FABMS m/z 512 (M⁺).

(2R,4R,6R)-2-tert-Butyldimethylsiloxy-4-tert-butyldiphenylsiloxy-6-(2-hydroxyethyl)-1-oxacyclohexane (13)

NaBH₄ (42.3 mg, 1.12 mmol) was added to the stirred solution of **12** (145 mg, 0.37 mmol) in MeOH (3 mL) at 0°C, and the reaction mixture was stirred at room temperature for 7 h. After addition of acetone (1 mL), the solution was diluted with brine, and extracted with AcOEt. The AcOEt extract was washed with brine, and then dried over MgSO₄. Removal of the solvent *in vacuo* gave an oily residue, which was purified by column chromatography on silica gel. The fraction eluted with 12% AcOEt in hexane afforded **13** (107 mg, 74%) as a colorless oil. $[\alpha]_D^{27}$ +7.85 (*c* 0.83, CHCl₃). IR (neat) 3450, 2970, 2850, 1470, 1390, 1250, 1120, 1040 cm⁻¹. ¹H NMR (CDCl₃) δ 7.64 (m, 4H), 7.38 (m, 6H), 5.30 (dd, J=9.4, 2.1 Hz, 1H), 4.26 (t, J=2.7 Hz, 1H), 4.16 (m, 1H), 3.33 (m, 2H), 2.34 (m, 1H), 2.04 (m, 2H), 1.86–1.29 (m, 4H), 1.09 (s, 9H), 0.92 (s, 9H), 0.16 (s, 3H), 0.14 (s, 3H). FABMS m/z 514 (M⁺), 457 (M⁺-t-Bu). HRMS for C₂₉H₄₆O₄Si₂ M⁺ 514.2949, found 514.2934.

(2R,4R,6S)-2-tert-Butyldimethylsiloxy-4-tert-butyldiphenylsiloxy-6-(2-iodoethyl)-1-oxacyclohexane (14)

A mixture of Ph₃P (134 mg, 0.51 mmol) and I₂ (131 mg, 0.51 mmol) in CH₂Cl₂ (1 mL) was stirred for 1 h at room temperature, to which a solution of **13** (20.0 mg, 0.051 mmol) and pyridine (0.08 mL) in CH₂Cl₂ (0.5 mL) was added dropwise at 0°C. The whole was stirred for 3 h at room temperature. The reaction mixture was diluted with 5% aqueous Na₂S₂O₃, and extracted with ether. The ether extract was washed with brine, and then dried over MgSO₄. Removal of the solvent *in vacuo* gave an oily residue, which was purified by column chromatography on silica gel. The fraction eluted with 2% AcOEt in hexane afforded **14** (24.4 mg, 95%) as a colorless oil. [α]_D²² +11.2 (c 1.20, CHCl₃). IR (neat) 2950, 1465, 1425, 1390, 1360, 1250, 1155, 1100, 1040 cm⁻¹. ¹H NMR (CDCl₃) δ 7.60–7.71 (m, 4H), 7.35–7.46 (m, 6H), 5.30 (dd, J=2.1, 9.4 Hz, 1H), 4.26 (m, W_H=7.5 Hz, 1H), 4.22 (tt, J=9.0, 2.8 Hz, 1H), 3.80 (m, 2H), 2.46 (m, 1H), 1.30–1.85 (m, 5H), 1.08 (s, 9H), 0.91 (s, 9H), 0.14 (s, 3H), 0.13 (s, 3H). FABMS m/z 624 (M⁺), 567 (M⁺–t-Bu). HRMS for C₂₉H₄₅O₃ISi₂ M⁺ 624.1951, found 624.1954.

Acknowledgements

We are grateful for stipend given to Y. N. by the Japan Society for the Promotion of Science. We thank Amano Pharmaceutical Co., Ltd., for kindly providing lipases.

References

- 1. a) Endo, A.; Kuroda, M.; Tsujita, Y. J. Antibiot. 1976, 29, 1346; b) Endo, A. J. Med. Chem. 1985, 28, 401; c) Kathawala, F. G. Med. Res. Rev. 1991, 11, 121; d) For a review of the synthesis see: Rosen, T.; Heathcock, C. H. Tetrahedron 1986, 18, 4909; e) Narasaka, K.; Saitou, M.; Iwasawa, N. Tetrahedron: Asymmetry 1991, 2, 1305; f) Nagashima, S.; Taishi, T.; Kanematsu, K. Tetrahedron Lett. 1994, 35, 3577 and references cited therein.
- 2. a) Kumar, A.; Dittmer, D. C. J. Org. Chem. 1994, 59, 4760 and references cited therein; b) A similar approach to mevinic acids based on enzyme-catalyzed asymmetric acylation has been reported, see; Lautens, M.; Ma, S. Yee, A. Tetrahedron Lett. 1995, 36, 4185, in which they described that an enzymatic hydrolysis of 4 did not give satisfactory result.
- 3. a) Radlick, P. J. Org. Chem. 1964, 29, 960; b) Schuster, D. I.; Palmer, J. M.; Dickerman, S. C. J. Org. Chem. 1966, 31, 4281.

- a) Xie, Z.-F. Tetrahedron: Asymmetry 1991, 2, 733;
 b) Suemune, H. Yakugaku Zasshi 1992, 112, 432;
 c) Hirose, Y. Faruaw 1996, 32, 1075.
- 5. Pseudomonas fluorescens lipase (PFL) has been reclassified as P. cepacia lipase (PCL). However, we use the former name for the sake of uniformity with previous results.
- 6. Dale, J. A.; Mosher, H. S. J. Am. Chem. Soc. 1973, 95, 512.
- 7. Harada, N.; Nakanishi, K.; Uda, H. J. Am. Chem. Soc. 1978, 100, 4029.
- 8. The second negative Cotton effect was not observed because of the strong positive background.
- 9. Based on a Dreiding stereomodel examination, the sign of exiton chirality attributable to the two benzoyloxy groups of (+)-8 did not change among the reasonable conformations, which means that S,S-configuration of 8 results the positive exiton chirality. Our result concerning with the absolute configuration of (-)-5 is agreed with that of Lautans et al. (ref. 2b) based on ¹H NMR spectra of corresponding Mosher's ester.

(Received in Japan 11 October 1996; accepted 25 November 1996)